ANALYTICAL REPORT

Prepared by LOCKHEED MARTIN

29 Riverside Avenue (Phase 2 Assessment) Newark, New Jersey

June 2011

EPA Work Assignment No. SERAS-089 LOCKHEED MARTIN Work Order No. SER00089 EPA Contract No. EP-W-09-031

Submitted to
D. Bussey
EPA-ERT
4220 S Maryland Parkway, Bldg. D, Suite 800,
Las Vegas, NV 89119

Vinot Lausa 6/17/11
V. Kansal Date

Analytical Support Leader

D./Killeen QA/QC Officer

w some

D. Miller

Program Manager

Analysis by:

Cape Fear Analytical

Prepared by: Y. Mehra

Reviewed by: A. LoSurdo

Date

Table of Contents

Topic

Testing Laboratories Information Detailed Sample Information Introduction Case Narrative Summary of Abbreviations

Section I

Results of the Analysis for Dioxins/Furans in Soil

Table 1.1

Section II

Results of the LCS/LCSD Analysis for Dioxins/Furans in Soil	Table 2.1
Results of the MS/MSD Analysis for Dioxins/Furans in Soil	Table 2.2
Results of the Labeled Standard/Surrogate Recoveries for Dioxin/Furans in Soil	Table 2.3

Section III

Communication Chain of Custody

Appendices

Appendix A Data for Dioxins/Furans in Soil

W 089

Appendix A will be furnished on request.

Environmental Response Team/Scientific Engineering, Response and Analytical Services 2890 Woodbridge Avenue, Building 209 Annex Woodbridge NJ 08837

TESTING LABORATORIES INFORMATION

Analysis of Dioxins/Furans in Soil. (Method SW-846 8290A)

Cape Fear Analytical 3306 Kitty Hawk Road Suite 120 Wilmington NC 28405

All analyses were performed according to our NELAP-approved quality assurance program. The test results meet the requirements of the current NELAP standards, where applicable, except as noted in the laboratory case narrative provided. Results are intended to be considered in their entirety and apply only to those analyzed and reported herein.

Cape Fear Analytical Laboratory is certified by the State of Utah Department of Health, Laboratory Certification ID # MC 01894.

Detailed Sample Information

Cape Fear Sample #	Field Sample #		
2291001	089-0001		
2291002	089-0002		
2291003	089-0003		
2291004	089-0004		
2291005	089-0005		
2291006	089-0006		
2291007	089-0007		
2291008	089-0008		
2291009	089-0009		
2291010	089-0010		
2291011	089-0011		
2291012	089-0012		

Introduction

SERAS personnel, in response to WA# SERAS-089, provided analytical support for environmental samples collected from the 29 Newark Avenue (Phase 2 Assessment) Site, Newark, New Jersey as described in the following table. The support also included QA/QC, data review and preparation of an analytical report containing analytical and QA/QC results.

Chain of Custody #	Number of Samples	Sampling Date	Date Received	Date Analyzed	Matrix	Analysis/ Method	Laboratory	Data Package
2-041211-105201- 0001	12	04/12/11	04/13/11	04/20/11 through 04/27/11		Dioxins/Furans/ SW-846 8290A	1	W 089

Case Narrative

Sampling was conducted as per the site-specific Quality Assurance Project Plan (QAPP) and analyzed by the analytical methods stated in the QAPP. The laboratory reported the data to three significant figures. Any other representation of the data is the responsibility of the user. All data validation flags have been inserted into the results tables.

Dioxins/Furans in Soil Package W 089

The recovery standards for the samples showed retention time (RT) shifts greater than ± 10 seconds. The laboratory compensated for the RT shifts by comparing the RTs of the samples versus the RTs of the internal standards in the daily calibration. The data validator used professional judgment in assessing the samples and found the laboratory RT adjustments were acceptable.

Method Blank 12003101 contained 2,3,7,8-TCDF and OCDD. The concentrations of 2,3,7,8-TCDF in samples 089-0007 and 089-0010 are qualified non-detect (U) because the 2,3,7,8-TCDF concentrations in the samples were less than the Reporting Limit (RL).

The concentration of OCDD exceeded the linear calibration range in samples 089-0001, 089-0002, 089-0009 and 089-0011. The concentrations of OCDD in these samples are qualified estimated (J).

The MS/MSD percent recoveries in sample 089-0003 for 1,2,3,7,8,9-HxCDF were outside the acceptable QC limits. The sample result for 1,2,3,7,8,9-HxCDF is qualified estimated (UJ).

Ether interference was present in the channel for 1,2,3,4,7,8,9-HpCDF in sample 089-0011. The concentration for this compound in this sample is qualified as an estimated most probable concentration (EMPC).

Due to lock mass ion drifts of greater than (>) 20 percent (%) in the retention time windows, the following samples and homologues are qualified accordingly in the following table. Homologues marked with an asterisk (*) indicate that the sample concentration has been adjusted for any ether interference.

Sample Number	Homologue	Flag
089-0001	Total PeCDD	J
	Total HxCDD	J
	Total TCDF	J
	Total PeCDF*	J
	Total HxCDF	J
089-0002	Total PeCDD	J
	Total TCDF*	J
	Total PeCDF	J
089-0003	Total TCDD	J
	Total PeCDD	J
	Total PeCDF*	J
089-0005	Total PeCDD	J
	Total PeCDF	J
089-0006	Total PeCDD	J
	Total HxCDD	J
	Total TCDF	J
	Total PeCDF*	J
	Total HxCDF	J
089-0007	Total PeCDD	J
	Total HxCDD	J
	Total PeCDF*	J
	Total HxCDF*	J
089-0008	Total PeCDF	J
	Total HxCDF*	J
089-0009	Total PeCDD	J
	Total PeCDF*	J
089-0010	Total TCDD	J
	Total PeCDD	J
	Total TCDF	J
	Total PeCDF	J
	Total HxCDF*	J
089-0011	Total PeCDD	J
	Total HxCDD	J
	Total PeCDF*	J
	Total HxCDF*	J
089-0012	Total PeCDD	J
	Total PeCDF*	J
	Total HxCDF*	J

The results presented in this report only relate to the samples analyzed. All results are intended to be considered in their entirety. The Environmental Response Team/Scientific, Engineering, Response and Analytical Services laboratory is not responsible for utilization of less than the complete report.

Summary of Abbreviations

BFB	Bromofluorobenzene

C Centigrade

CLP Contract Laboratory Program

COC Chain of Custody conc concentration cont continued

CRDL Contract Required Detection Limit
CRQL Contract Required Quantitation Limit

D (Surrogate Table) value is from a diluted sample and was not calculated

Dioxin Polychlorinated dibenzo-p-dioxins (PCDD) and Polychlorinated dibenzofurans (PCDF)

DFTPP Decafluorotriphenylphosphine

EMPC Estimated maximum possible concentration GC/MS Gas Chromatography/ Mass Spectrometry

IS Internal Standard

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate
MDA Minimum Detectable Activity
MS (BS) Matrix Spike (Blank Spike)

MSD (BSD) Matrix Spike Duplicate (Blank Spike Duplicate)

MW Molecular Weight

NA Not Applicable or Not Available NAD Normalized Absolute Difference

NC Not Calculated

NR Not Requested/Not Reported

NS Not Spiked
% D Percent Difference
% REC Percent Recovery

SOP Standard Operating Procedure ppbv parts per billion by volume

ppm parts per million
pptv parts per trillion by volume
PQL Practical Quantitation Limit
PAL Performance Acceptance Limit
QA/QC Quality Assurance/Quality Control

QL Quantitation Limit RL Reporting Limit

RPD Relative Percent Difference RSD Relative Standard Deviation

SERAS Scientific, Engineering, Response and Analytical Services

SIM Selected Ion Monitoring

Sur Surrogate

TIC Tentatively Identified Compound

TCLP Toxicity Characteristic Leaching Procedure

VOC Volatile Organic Compound

Value exceeds the acceptable QC limits

m^3	cubic meter	g	gram	kg	kilogram	L	liter
μg	microgram	μL	microliter	mg	milligram	mL	milliliter
ng	nanogram	pg	picogram	pCi	picocurie	S	sigma

Data Validation Flags

J	Value is estimated	R	Value is unusable
Ī+	Value is estimated high (metals only)	IJ	Not detected

J- Value is estimated low (metals only) UJ Not detected and RL is estimated

N Presumptively present (Aroclors only)

Rev. 1/14/09

REPORT OF LABORATORY ANALYSIS

SERAS

Table 1.1 Results of the Analysis for Dioxins/Furans in Soil WA# SERAS-089 29 Riverside Avenue (Phase 2 Assessment) Results Based on Dry Weight

Method SW-846 8290A

Page 1 of 5

Lab Sample ID		2291001	2291002
Sample No	Method Blank	089-0001	089-0002
Location	12003101	NS-1	NS-2
% solids	NA	86	89

	Result		RL	Result		RL	Result		RL _.
Analyte	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g
2378-TCDD	U		1.00	3.04		0.974	1.94		0.941
12378-PeCDD	Ū		5.00	9.48		4.87	3.95 J		4.70
123478-HxCDD	U		5.00	5.35		4.87	3.82 J		4.70
123678-HxCDD	U		5.00	29.9		4.87	12.4		4.70
123789-HxCDD	U		5.00	19.0		4.87	8.40		4.70
1234678-HpCDD	U		5.00	475		4.87	275		4.70
OCDD	0.444 J		10.0	8210 J		9.74	4910 J		9.41
2378-TCDF	0.336 J		1.00	22.5		0.974	5.34		0.941
12378-PeCDF	U		5.00	3.16 J		4.87	1.23 J		4.70
23478-PeCDF	U		5.00	11.6		4.87	3.87 J		4.70
123478-HxCDF	U		5.00	11.6		4.87	5.29		4.70
123678-HxCDF	U		5.00	7.23		4.87	3.20 J		4.70
234678-HxCDF	U		5.00	8.22		4.87	4.92		4.70
123789-HxCDF	0.220 J		5.00	1.08 J		4.87	0.440 J		4.70
1234678-HpCDF	U		5.00	90.2		4.87	52.0		4.70
1234789-HpCDF	U		5.00	7.99		4.87	3.84 J		4.70
OCDF	U		10.0	187		9.74	98.9		9.41
Total TCDDs	U		1.00	21.8		0.974	8.54		0.941
Total PeCDDs	U		5.00	48.9 J		4.87	21.3 J		4.70
Total HxCDDs	U		5.00	189 J		4.87	97.9		4.70
Total HpCDDs	U		5.00	906		4.87	549		4.70
Total TCDFs	0.336 J		1.00	278 J		0.974	58.9 J		0.941
Total PeCDFs	U		5.00	137 J		4.87	42.5 J		4.70
Total HxCDFs	U		5.00	128 J		4.87	77.7		4.70
Total HpCDFs	U		5.00	266		4.87	140		4.70
Total Adjusted Conc.	0.0007			24.0			40.0		
WHO TEQ (ND=0)	0.0337			34.8			16.3		

Method SW-846 8290A

Page 2 of 5

Lab Sample ID	2291003	2291004	2291005
Sample No	089-0003	089-0004	089-0005
Location	NS-3	NS-4	NS-5
% solids	75	99	97

	Result		RL	Result		RL	Result		RL
Analyte	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g
2378-TCDD	6.20 J		9.35	0.311 J		0.778		0.362	0.948
12378-PeCDD	14.0 J		46.8	1.01 J		3.89	0.912 J		4.74
123478-HxCDD	12.5 J		46.8	0.876 J		3.89	1.09 J		4.74
123678-HxCDD	46.0 J		46.8	2.92 J		3.89	4.09 J		4.74
123789-HxCDD	31.7 J		46.8	2.08 J		3.89	2.92 J		4.74
1234678-HpCDD	810		46.8	46.9		3.89	62.3		4.74
OCDD	7850		93.5	455		7.78	599		9.48
2378-TCDF	16.3		9.35	1.29		0.778	1.67		0.948
12378-PeCDF	5.56 J		46.8	0.415 J		3.89	0.571 J		4.74
23478-PeCDF	23.2 J		46.8	1.47 J		3.89	2.13 J		4.74
123478-HxCDF	19.0 J		46.8	1.38 J		3.89	1.79 J		4.74
123678-HxCDF	11.2 J		46.8	0.883 J		3.89	1.11 J		4.74
234678-HxCDF	19.1 J		46.8	1.23 J		3.89	1.55 J		4.74
123789-HxCDF	UJ		46.8	U		3.89	U		4.74
1234678-HpCDF	138		46.8	8.68		3.89	12.4		4.74
1234789-HpCDF	8.20 J		46.8	0.532 J		3.89	0.730 J		4.74
OCDF	273		93.5	16.9		7.78	22.0		9.48
Total TCDDs	30.8 J		9.35	0.512 J		0.778	0.952		0.948
Total PeCDDs	65.9 J		46.8	4.03		3.89	5.74 J		4.74
Total HxCDDs	389		46.8	22.5		3.89	31.4		4.74
Total HpCDDs	1610		46.8	91.6		3.89	123		4.74
Total TCDFs	214		9.35	12.3		0.778	17.3		0.948
Total PeCDFs	250 J		46.8	17.5		3.89	22.5 J		4.74
Total HxCDFs	295		46.8	17.6		3.89	25.5		4.74
Total HpCDFs	358		46.8	20.6		3.89	29.9		4.74
Total Adjusted Conc.									
WHO TEQ (ND=0)	54.9			3.54			3.93		

Method SW-846 8290A

Page 3 of 5

Lab Sample ID Sample No	2291006 089-0006	2291007 089-0007	2291008 089-0008
Location	NS-6	NS-7	NS-7D
% solids	98	92	76

Analyte	Result	EMPC	RL	Result	EMPC	RL	Result	EMPC	RL
Analyte	pg/g	EIVIFC	pg/g	pg/g	EIVIFC	pg/g	pg/g	EIVIFC	pg/g
2378-TCDD	0.489 J		0.966	1.02 J		4.76	U		4.89
12378-PeCDD	0.906 J		4.83	3.51 J		23.8	3.02 J		24.4
123478-HxCDD	1.15 J		4.83	2.93 J		23.8		2.42	24.4
123678-HxCDD	3.67 J		4.83	7.28 J		23.8	6.09 J		24.4
123789-HxCDD	2.78 J		4.83	6.10 J		23.8	5.28 J		24.4
1234678-HpCDD	68.1		4.83	150		23.8	120		24.4
OCDD	654		9.66	2480		47.6	1700		48.9
2378-TCDF	1.63		0.966	3.33 J		4.76	U		4.89
12378-PeCDF	0.611 J		4.83	1.16 J		23.8	1.45 J		24.4
23478-PeCDF	3.19 J		4.83	3.84 J		23.8	3.67 J		24.4
123478-HxCDF	1.93 J		4.83	5.28 J		23.8	4.41 J		24.4
123678-HxCDF	1.39 J		4.83	2.96 J		23.8	2.65 J		24.4
234678-HxCDF	1.96 J		4.83	4.61 J		23.8	5.29 J		24.4
123789-HxCDF	U		4.83	U		23.8	U		24.4
1234678-HpCDF	13.5		4.83	32.0		23.8	28.4		24.4
1234789-HpCDF	0.690 J		4.83	2.51 J		23.8	2.78 J		24.4
OCDF	22.9		9.66	53.2		47.6	48.8 J		48.9
Total TCDDs	1.50		0.966	4.28 J		4.76	U		4.89
Total PeCDDs	6.20 J		4.83	19.1 J		23.8	9.82 J		24.4
Total HxCDDs	28.1 J		4.83	70.6 J		23.8	41.8		24.4
Total HpCDDs	132		4.83	296		23.8	236		24.4
Total TCDFs	16.9 J		0.966	36.9		4.76	5.68		4.89
Total PeCDFs	32.8 J		4.83	33.5 J		23.8	26.9 J		24.4
Total HxCDFs	32.2 J		4.83	41.5 J		23.8	47.3 J		24.4
Total HpCDFs	33.1		4.83	77.8		23.8	65.4		24.4
Total Adjusted Conc.									
WHO TEQ (ND=0)	4.9			11.6			8.57		

Method SW-846 8290A

Page 4 of 5

Lab Sample ID	2291009	2291010	2291011
Sample No	089-0009	089-0010	089-0011
Location	NS-8	NS-9	NS-10
% solids	97	92	76

	Result	FMBO	RL _,	Result	E1100	RL _,	Result	ELIDO	RL _,
Analyte	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g	pg/g	EMPC	pg/g
2378-TCDD	2.66 J		4.84	2.71 J		9.77	15.1		9.96
12378-PeCDD	8.52 J		24.2	U		48.8	20.4 J		49.8
123478-HxCDD	25.0		24.2	2.96 J		48.8	15.3 J		49.8
123678-HxCDD	94.5		24.2	34.0 J		48.8	113		49.8
123789-HxCDD	35.5		24.2	12.8 J		48.8	44.6 J		49.8
1234678-HpCDD	3390		24.2	724		48.8	4580		49.8
OCDD	112000 J		48.4	2630		97.7	41200 J		99.6
2378-TCDF	8.39		4.84	7.33 J		9.77	14.6		9.96
12378-PeCDF	3.96 J		4.84	U		48.8	10.2 J		49.8
23478-PeCDF	9.86 J		24.2	8.29 J		48.8	34.8 J		49.8
123478-HxCDF	17.5 J		24.2	7.99 J		48.8	44.0 J		49.8
123678-HxCDF	13.6 J		24.2	5.57 J		48.8	31.4 J		49.8
234678-HxCDF	24.4		24.2	5.44 J		48.8	45.9 J		49.8
123789-HxCDF	U		24.2	U		48.8	3.05 J		49.8
1234678-HpCDF	270		24.2	58.9		48.8	1030		49.8
1234789-HpCDF	30.5		24.2	U		48.8		43.7	49.8
OCDF	644		24.2	125		97.7	3940		99.6
Total TCDDs	59.9		48.4	12.1 J		9.77	125		9.96
Total PeCDDs	57.6 J		4.84	4.37 J		48.8	193 J		49.8
Total HxCDDs	487		24.2	268		48.8	1040 J		49.8
Total HpCDDs	6830		24.2	1230		48.8	8350		49.8
			24.2						
Total TCDFs	144		4.84	56.3 J		9.77	347		9.96
Total PeCDFs	168 J		24.2	52.0 J		48.8	510 J		49.8
Total HxCDFs	410		24.2	80.1 J		48.8	623 J		49.8
Total HpCDFs	1030		24.2	143		48.8	3300		49.8
Total Adjusted Conc.									
WHO TEQ (ND=0)	107			21.5			147		

Method SW-846 8290A Page 5 of 5

 Lab Sample ID
 2291012

 Sample No
 089-0012

 Location
 NS-11

 % solids
 72

Analyte	Result pg/g	EMPC	RL pg/g
2378-TCDD	216		0.983
12378-PeCDD	7.12		4.92
123478-HxCDD	5.43		4.92
123678-HxCDD	7.58		4.92
123789-HxCDD	4.92		4.92
1234678-HpCDD	165		4.92
OCDD	2800		9.83
2378-TCDF	6.53		0.983
12378-PeCDF	6.32		4.92
23478-PeCDF	8.96		4.92
123478-HxCDF	12.9		4.92
123678-HxCDF	4.32 J		4.92
234678-HxCDF	5.20		4.92
123789-HxCDF	0.765 J		4.92
1234678-HpCDF	70.5		4.92
1234789-HpCDF	3.10 J		4.92
OCDF	158		9.83
Total TCDDs	310		0.983
Total PeCDDs	107 J		4.92
Total HxCDDs	145		4.92
Total HpCDDs	362		4.92
Total TCDFs	198		0.983
Total PeCDFs	162 J		4.92
Total HxCDFs	64 J		4.92
Total HpCDFs	158		4.92
•			
Total Adjusted Conc.			
WHO TEQ (ND=0)	234		

Table 2.1 Results of the LCS/LCSD Analysis for Dioxins/Furans in Soil WA# SERAS-089 29 Riverside Avenue (Phase 2 Assessment)

Laboratory Control Sample: 04/20/11

	Spike Added	LCS Result	LCS	LCSD Result	LCSD		Q	C Limits
Analyte	pg/µL	pg/µL	% Recovery	pg/µL	% Recovery	RPD	RPD	% Recovery
2,3,7,8-TCDD	20.0	23.0	115	22.9	114	0	20	70-130
1,2,3,7,8-PeCDD	100	112	112	109	109	3	20	70-130
1,2,3,4,7,8-HxCDD	100	121	121	116	116	4	20	70-130
1,2,3,6,7,8-HxCDD	100	112	112	112	112	0	20	70-130
1,2,3,7,8,9-HxCDD	100	124	124	120	120	4	20	70-130
1,2,3,4,6,7,8-HpCDD	100	106	106	102	102	3	20	70-130
OCDD	200	217	109	213	107	2	20	70-130
2,3,7,8-TCDF	20.0	20.7	104	19.9	100	4	20	70-130
1,2,3,7,8-PeCDF	100	111	111	110	110	1	20	70-130
2,3,4,7,8-PeCDF	100	111	111	113	113	1	20	70-130
1,2,3,4,7,8-HxCDF	100	122	122	118	118	3	20	70-130
1,2,3,6,7,8-HxCDF	100	112	112	116	116	4	20	70-130
2,3,4,6,7,8-HxCDF	100	114	124	111	122	3	20	70-130
1,2,3,7,8,9-HxCDF	100	124	114	122	111	1	20	70-130
1,2,3,4,6,7,8-HpCDF	100	110	110	110	110	0	20	70-130
1,2,3,4,7,8,9-HpCDF	100	104	104	102	102	2	20	70-130
OCDF	200	220	110	220	110	0	20	70-130

Sample Number 089-0003

	Sample Result	MS Spike Added	MS Result	MS	MSD Spike Added	MSD Result	MSD		QC	CLimits
Analyte	pg/g	pg/g	pg/g	% Recovery	pg/g	pg/g	% Recovery	RPD	RPD	% Recovery
2,3,7,8-TCDD	6.20	19.7	25.5	98	19.3	26.2	104	3	20	60-140
1,2,3,7,8-PeCDD	14.0	98.7	122	109	96.5	123	113	1	20	60-140
1,2,3,4,7,8-HxCDD	12.5	98.7	129	118	96.5	126	118	3	20	60-140
1,2,3,6,7,8-HxCDD	46.0	98.7	139	95	96.5	148	105	6	20	60-140
1,2,3,7,8,9-HxCDD	31.7	98.7	134	104	96.5	135	107	0	20	60-140
1,2,3,4,6,7,8-HpCDD	810	98.7	825	NC	96.5	921	NC	NC	20	60-140
OCDD	7850	197.0	7230	NC	193	7850	NC	NC	20	60-140
2,3,7,8-TCDF	16.3	19.7	34.4	92	19.3	38.1	113	10	20	60-140
1,2,3,7,8-PeCDF	5.56	98.7	103	99	96.5	107	105	4	20	60-140
2,3,4,7,8-PeCDF	23.2	98.7	119	97	96.5	125	106	5	20	60-140
1,2,3,4,7,8-HxCDF	19.0	98.7	142	125	96.5	141	127	1	20	60-140
1,2,3,6,7,8-HxCDF	11.2	98.7	120	110	96.5	120	113	0	20	60-140
2,3,4,6,7,8-HxCDF	19.1	98.7	52.8	106	96.5	47	115	12	20	60-140
1,2,3,7,8,9-HxCDF	U	98.7	124	54 *	96.5	130	48 *	5	20	60-140
1,2,3,4,6,7,8-HpCDF	138	98.7	226	89	96.5	246	112	9	20	60-140
1,2,3,4,7,8,9-HpCDF	8.20	98.7	108	101	96.5	117	112	8	20	60-140
OCDF	273	197.0	462	96	193	488	111	5.5	20	60-140

Table 2.3 Results of the LabeledStandards/Surrogate Recoveries for Dioxin/Furans in Soil WA# SERAS-089 29 Riverside Avenue (Phase 2 Assessment)

Method SW-846 Method 8290A

Sample No	Method Blank	089-0001	089-0002	089-0003	089-0004	089-0005	089-0006	089-0007	089-0008	
	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	QC Limits Percent
13C-2,3,7,8-TCDD	76	85	85	85	77	75	76	81	80	40-135
13C-1,2,3,7,8-PeCDD	85	86	78	81	72	69	71	79	80	40-135
13C-1,2,3,6,7,8-HxCDD	76	77	72	77	68	68	65	65	66	40-135
13C-1,2,3,4,6,7,8-HpCDD	91	79	80	69	66	60	64	76	74	40-135
13C-OCDD	74	64	65	42	42	37	49	64	61	40-135
13C-2,3,7,8-TCDF	84	93	94	93	85	83	84	81	82	40-135
13C-1,2,3,7,8-PeCDF	84	88	82	85	72	71	71	84	84	40-135
13C-1,2,3,6,7,8-HxCDF	72	80	70	77	67	65	63	60	59	40-135
13C-1,2,3,4,6,7,8-HpCDF	82	73	72	66	62	57	60	71	69	40-135

Sample No	089-0009	089-0010	089-0011	089-0012	089-0003MS	089-0003MSD	LCS	LCSD		
	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	QC Limits Percent	
	1 0100111	. 0.00.n	. 0.00.11	1 0100111	1 0.00.11	1 0.00.11	. 0.00	1 0100111	7 0700710	
13C-2,3,7,8-TCDD	77	86	72	81	90	94	76	61	40-135	
13C-1,2,3,7,8-PeCDD	80	85	63	75	87	92	90	86	40-135	
13C-1,2,3,6,7,8-HxCDD	64	82	65	71	76	85	75	73	40-135	
13C-1,2,3,4,6,7,8-HpCDD	76	78	57	77	67	79	88	90	40-135	
13C-OCDD	80	41	44	44	41	53	77	73	40-135	
13C-2,3,7,8-TCDF	79	92	79	89	97	99	85	66	40-135	
13C-1,2,3,7,8-PeCDF	83	85	69	76	90	93	86	79	40-135	
13C-1,2,3,6,7,8-HxCDF	62	79	64	66	72	80	70	69	40-135	
13C-1,2,3,4,6,7,8-HpCDF	71	71	56	70	65	74	80	81	40-135	

SERAS-089-DAR-061711 11

Lockheed Martin
Scientific Engineering Response and Analytical Services
2890 Woodbridge Avenue Building 209
Edison, NJ 08837-3679
Telephone 732-321-4200 Facsimile 732-494-4021

Cape Fear Analytical LLC 3306 Kitty Hawk Rd. Suite 120 Wilmington, NC 28405 910-795-0422 Chris Cornwell Chris.cornwell@cfanalytical.com

Attn: Chris Cornwell

March 7, 2011

As per Lockheed Martin/SERAS purchase order 7100070243, for Project 0-089, please analyze samples according to the following parameters:

Matrix	# of samples
Soil	17

The samples are expected to arrive at your laboratory the week of April 11th, **All applicable QA/QC** (eg: BS/BSD, LCS, Duplicates, and Blanks) analysis as per method, will be performed on our sample matrix. Preliminary sample and QC result tables plus a signed copy of our Chain of Custody must be sent to SERAS 15 business days after each batch of samples. The complete data package is due 20 business days after final sample receipt. The complete data package must include all items on the deliverables checklist.

All sample and QC results must be summarized in a tab delimited file diskette deliverable. .

Please submit all reports concerning this project to Misty Barkley (732) 321-4205 or misty.barkley@imco.com. Any contractual question, please call Joe Rosenberger (732) 321-4215.

Singerely,

Vinod Kansal

Analytical Support Chemist

Lockheed Martin / SERAS Project

VK:mb Attachments

CC.

V. Kansal

D. Bussey

J. Rosenberger

Subcontracting File

D. Killeen

M. Ebel

USEPA

DateShipped: 4/12/2011 CarrierName: FedEx

AirbillNo:

CHAIN OF CUSTODY RECORD

Riverside Avenue

Contact Name: Martin Etel

Contact Phone: 732-321-4241

412-889-2258

No: 2-041211-105201-0001

Cooler #:

Lab: Cape Fear Analytical

Lab Phone:

ab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont	Container	Preservative	MS/MSD
	089-0001	: NS-1	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0002	NS-2	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0003	NS-3	Dioxin	Soil	4/12/2011	1	Jar	4 C	Y
	089-0004	NS-4	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0005	NS-5	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0006	NS-6	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0007	NS-7	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0008	NS-7D	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0009	NS-8	Dioxin	Soil	4/12/2011	1	Jar	4 C	· N
	089-0010	NS-9	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0011	NS-10	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
	089-0012	NS-11	Dioxin	Soil	4/12/2011	1	Jar	4 C	N
12	<u> </u>								
									-
		1				1			

Special Instructions:

Callection times taken from sample labels.

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
samples	mosal	9-12-11	Cunde Larki	4/13/11	0940						
			o j. · · · · ·			1 10 1 10 1 10 1 10 10 11 10 10 11 10 10	# 10 TO COMPANY OF THE PARTY OF				<u> </u>
-											
		:								<u> </u>	
		L								İ	

WO# 2291

temp = 2.50